18411	HIR HIE	381 BE

60312			
ROLL No.	[
	TEST BOOKLET No.	066	

TEST FOR POST GRADUATE PROGRAMMES

CHEMICAL ENGINEERING

Time: 2 Hours Maximum Marks: 450

INSTRUCTIONS TO CANDIDATES

- 1. You are provided with a Test Booklet and an Optical Mark Reader (OMR) Answer Sheet to mark your responses. Do not soil the Answer Sheet. Read carefully all the instructions given on the Answer Sheet.
- 2. Write your Roll Number in the space provided on the top of this page.
- 3. Also write your Roll Number, Test Code, and Test Subject in the columns provided for the same on the Answer Sheet. Darken the appropriate bubbles with a Ball Point Pen.
- 4. The paper consists of 150 objective type questions. All questions carry equal marks.
- 5. Each question has four alternative responses marked A, B, C and D and you have to darken the bubble fully by a Ball Point Pen corresponding to the correct response as indicated in the example shown on the Answer Sheet.
- 6. Each correct answer carries 3 marks and each wrong answer carries 1 minus mark.
- 7. Please do your rough work only on the space provided for it at the end of this Test Booklet.
- 8. You should return the Answer Sheet to the Invigilator before you leave the examination hall. However, you can retain the Test Booklet.
- 9. Every precaution has been taken to avoid errors in the Test Booklet. In the event of such unforeseen happenings the same may be brought to the notice of the Observer/Chief Superintendent in writing. Suitable remedial measures will be taken at the time of evaluation, if necessary.

CHEMICAL ENGINEERING

1.	The nu	nber of boiling points of a pur	e subst	ance could be
	(A) (C)	limited infinity		only one depends on the state of substance
2.	contain	uid stream containing 10 wt % ing no salt. The resultant mix rates of the two streams is	6 salt is ed strea	mixed with another liquid stream am contains 2 wt % salt. The ratio
	(A) (C)			1/5 1/2
3.	A solid	l material has a solid densit g/m ³ . When the material form	y of 1 is a pac	500 Kg/m ³ and bulk density of ked bed, its porosity will be
		0.25 0.33	(B) (D)	
4.	How m	any kilogram of ethyl alcohol	may co	ntain 24 Kg carbon?
	(A) (C)			32 46
5.	16 gm	of sulfur dioxide upon oxidat age yield of sulfur trioxide is	ion giv	es 18 gm of sulfur trioxide. The
	(A) (C)			75 90
6.	When 9 will be		burnt,	gm of carbon dioxide
	(A) (C)		(B) (D)	
7.	The nor	mality of one weight percent a	aqueous	s sulfuric acid is nearly
	(A) (C)	0.02 0.10	(B) (D)	

8.	At mean sea level and 373 K, pure v	vater exerts a vapor pressure of about
	(A) 1013 (C) 101.3	(B) 1.013 (D) 10.13
9.	The specific gravities of sugar solutions	are measured using scale
	(A) ^o Baume (C) ^o Brix	(B) ° Twaddell (D) ° API
10.	The density of mercury is	
	(A) 13.6 gm/L (C) 1360 Kg/L	(B) 13.6 Kg/L (D) 1360 Kg/m ³
11:	5.6 liters of oxygen at NTP is equivalent	to mole
	(A) 0.250 (C) 0.50	(B) 0.125 (D) 1.00
12.	One lb-mole of an ideal gas at 273 K volume of	and 29.92 inches of Hg occupies a
	(A) 35.91 ft ³ (C) 22.4 m ³	(B) 22.4 lit (D) 359.05 ft ³
13.	Hydrogen molecules are held together bond	in hydrogen molecule by
	(A) covalent (C) ionic	(B) coordinate (D) hydrogen
14.	The nitrogen content of air is approximat	ely
	(A) 77 mole% (C) 77 wt %	(B) 77 vol % (D) 79 wt %
15.	The volume of oxygen required for co carbon monoxide at STP is	mplete combustion of four liters of
	(6)	(B) 4L (D) 1L

16.	16 Kg. exerts a	of oxygen and 16 Kg of hydroge greater partial pressure in the res	n are ultant	mixed together. Which specie mixture?	S
	(B)	Oxygen Hydrogen Both have the same partial press It depends on the temperature	sure.		
17.	carbon	arbon is completely burnt in ox dioxide, 20% carbon monoxide oxygen used is	ygen. and 1	The flue gas analysis is 70% 0% oxygen. The percentage of	% of
	(A) (C)	10	(D)		
18.	dioxide conden	mposition of a gas mixture is 10% and the rest is water vapor on sed, the final mole % of hydrogo percent	mole	Dasis. II 30/0 of water vupor	10
		20 10	(B) (D)	5 13.33	
19.	The frequal r	action of total pressure exerted nasses of oxygen and methane is	by m	nethane in a mixture containir	ıg
	(A) (C)	$\frac{3}{4}$ $\frac{1}{3}$	(B) (D)	$\frac{2}{3}$ $\frac{1}{2}$	
20.	The vi	scosity of air at 1 atm and 32°F is	5		
	(C)	_	(D)	0.0172 cp. 1.72 pa.s	
21.	A solu	ntion of specific gravity 1.0 cont ic gravity of A is 0.70, the specifi	ains 3 c grav	5 w % A and 65 w % B. If the rity of B is	he
	(A) (C)	1.25 1.35	(B) (D)	1.30 1.20	

22. One KJ of heat is supplied to li What is the quantity of water hea	quid water and its temperature rises by 2 K.
(A) 4.186 Kg (C) 119.4 gm	(B) 4.186 gm (D) None of the above
23. Lurgi gasifier is a	or the above
(A) fixed bed (C) fluidized bed	(B) moving bed (D) entrained bed
24. Aryl benzene sulfonate is a	
(A) synthetic rubber (C) detergent	(B) plasticizer (D) solvent
25 are the more preferred ca	talysts in fluidized bed catalytic reactors.
(C) Zeolites	(B) low alumina (D) high alumina
Removal of dissolved gases from gas	oline is called
(A) stripping(C) degassing	(B) desorption (D) stabilization
27. Powdered coal is gasified in	process.
(A) Lurgi (C) Winkler	(B) Shell (D) Koppers-Totzek
roam is usually made of	·
(A) polyurethanes(C) polyesters	(B) silicones (D) polyamides
29. The importance of methanation step in manufacture is for	synthesis gas production for ammonia
 (A) removing carbon monoxide (B) removing carbon dioxide (C) making more hydrogen (D) removing both CO and CO₂ from 	n synthesis gas.

30.	Junker's calorimeter is used to find the calorific value of			ific value of
		Fuel oil Coal	(B) (D)	Gasoline Gaseous fuel
31.	Liquifie	ed petroleum gas is a mixture of		
		ethane and propane pentane and butane	(B) (D)	butane and propane ethane and Butane
32.	Shift co	onversion reaction is used to prod	luce	
	• •	methane carbon monoxide		hydrogen ammonia
33.	The sol	vent used for dewaxing in a petro	oleum	refinery is
	(A) (C)	DEA furfural	(B) (D)	CS ₂ propane
34.		the hydrocracking processes in the bed reactors	a petro	oleum refinery are carried out in
	(A) (C)	fixed moving	(B) (D)	
35.	Smoke	point improvement of kerosine i	s achi	eved by the removal of
	(A) (C)	moisture aliphatics	(B) (D)	aromatics sulfur
36.		arrangement of distillation towers	s in a j	petroleum refinery provides
	(A) (C)	Top tray reflux Pump-around reflux	(B) (D)	Pump-back reflux Total reflux
37.	The solv	vent which can be used for the re	mova	of CO ₂ and H ₂ S is
	(A) (C)	carbon disulfide ethylene glycol	(B) (D)	pentane hot potassium carbonate

38.	. A gas can always be condensed by	
	 (A) cooling alone (B) compressing alone (C) cooling below its triple point (D) cooling below its critical temper 	rature and then compressing
39.	Leather undergoes tanning for	
	(A) stiffening(C) making it water-resistant	(B) smoothening(D) making it flexible
40.	The catalyst used in commercial process	for manufacture of nitric acid is
	(A) zeolite(C) platinum – rhodium	(B) platinum – nickel(D) vanadium - chromium
41.	The pumps used for pumping boiler-feed	water are
	((()) + 1.	(B) gear (D) multistage centrifugal
42.	When a shear stress is applied to a subst deformation. The substance is a	tance it is found to resist it by static
	(C) 1:1	(B) non Newtonian (D) power law fluid.
43.	The predominant fluid property associate centrifugal pumps is	ted with cavitation phenomenon in
	(C)	B) surface tension D) vapor pressure
44.	The linear momentum equation is based or	1
		B) Newton's first law D) None of the above

4 5.	For stan	ndard steel pipes, for a given NPS, as Schedule number increases, wall				
	(A)	decreases				
	(B)					
	(C)	remains same		il 11 thiolmoss		
	(D)	schedule number has nothing to	do w	ith wall inickliess.		
46.	When a material is subjected to a constant shear rate a rapid increase in apparent viscosity occurs; such a phenomenon is observed in					
	(\(\)	rheopectics	(B)	dilatants		
	(C)	viscoelastics		thixotropics		
	` '					
47.	A perfe	ct fluid is				
	(A)	compressible and gas				
	(B)	a real fluid				
	(C)	the one which obeys ideal gas la	aw			
	(D)	incompressible and frictionless				
48.	When s may be	small particles are settling in a f described as flow	luid a	t very low Reynolds numbers, it		
	(A)	creeping	(B)			
	(C)		(D)	irrotational		
49.	,	flow at low Reynolds numbers,		forces are important		
	(\(\)	Inertial	(B)	Viscous		
	(C)		(D)			
50.	, -	pacity and effectiveness of indust	rial s	creens are		
	(A)	proportionally related	(B)	independent of each other		
	(C)	inversely related	(D)	have a fixed relationship.		
51.	Ball m	ills and tube mills are differentiat	ted ba	sed on the		
	(A)	length to diameter ratio				
	(B)					
	(C)	operating speed				
	(D)	type and size of grinding media	a			
	` '					

ny
٠.

59.	Which apprecia	one of the following ably at high temperature	gases ca s?	n em	it as well as absorb radiation
	(C)	oxygen nitrogen	es.	(D)	hydrogen carbon dioxide.
60.	In a she	ell and tube condenser, y should not be more that	the press an	sure di	rop on condensing – vapor side
	(A) (C)	70 KPa 1 atm		(B) (D)	15 KPa 2 psi
61.	Leidenf	rost point occurs in			
	(A) (C)		•	(B) (D)	transition boiling natural convection
62.	When s	team is to be used as a h	eat-trans	fer me	edium it is desirable that it is
		wet saturated dry saturated		(B) (D)	superheated partially saturated.
63.	Which	one of the following has	the lowe	st Pra	ndtl number?
	(A) (C)	liquid metals organic liquids		(B) (D)	gases inorganic liquids
64.	The pre	esence of multi-molecular aters will improve heat t	ar gases a ransfer by	nd wa y	nter vapor in burner gases of pipe
		conduction radiation		(B) (D)	convection heat transfer is not influenced.
65.		ermal equilibrium relation ve a slope of	on in a he	at exc	changer, when plotted as a graph,
	(A) (C)	> 1 + 1			< 1 -1
66.	Heat ex	cchangers which are esp	ecially us	seful v neat ex	with food products and similar schangers.
		double - pipe plate - type		(B) (D)	spiral – plate None of the above

6/.	Temp	erature 'pinch' and 'cross' ca	ın occur in	heat exchanger
	(A (C)		(B) (D)	double pipe None of the above
68.	A pre	ferred heat exchanger for gas	-gas servic	e is exchanger.
	(A) (C)	* *	(B) (D)	• •
69.	At ten absort called	nperature equilibrium the rati ivity depends only upon the	o of total r	radiating power of any body to its re of the body. This statement is
	(A) (C)	Plank's law Stefan-boltzman law	(B) (D)	
70.	In whi	ch case the overall heat tra- ansfer occurs without direct o	nsfer coef	ficient will be the highest when streams?
	(A) (C)	• •	(B) (D)	21
71.	The mo	plecular diffusivity D_{AB} for considering in D_{BA} for B diffusing in	omponent n A are eq	A diffusing in component B and ual for a mixture of
	(A) (C)	real gases ideal gases	(B) (D)	any fluids both ideal and real gases.
72.	Peclet 1	number is used to characterize	e.	
	(A) (C)	mass transfer mass dispersion	(B) (D)	diffusion None of the above
73.	In gas-l	iquid dispersion operations th	ne gas bub	ble size depends upon
		liquid viscosity interfacial tension		gas density All of the above
74.	The didispersi	mensionless group used ions isnumber	n calcula	tions related to liquid-liquid
	(A) (C)	Peclet Euler	` '	Weber Fraude

<u> </u>		11		
75.	One of absorpt	the following set of conditions maion process.	ay be	used to enhance the rate of a gas
	Where	T is temperature and P is pressure	: .	
	(A) (C)	low T and P low T and high P	(B) (D)	high T and P high T and Low P
76.	Structu to conv	red packings are preferred in pacl entional dumped packings becaus	ced to se the	wers for mass transfer compared y provide
	(B) (C)	less pressure drop though the co better mass transfer with high probetter mass transfer with low pronone of the reasons given in a, b	ressur essure	e drop.
77.	In the ratio of range o	f actual liquid rate to minimum l	ient l	ike packed and tray towers, the rate should preferably be in the
	(A) (C)	1 – 2 0.5 – 1.5	(B) (D)	1.5 – 2.5 1.1 – 1.5
78.	Higbie coeffic	's penetration theory on mass ient is directly proportional to mo	tran	sfer predicts that the transfer ar diffusivity (D) as
	(A) (C)	$D^{0.5}$ $D^{1.5}$	(B) (D)	$\begin{array}{c} D \\ D^2 \end{array}$
79.		design of sieve tray tower 'ent	rainm	ent flooding considerations' are
		tray spacing number of trays	(B) (D)	tray diameter tower height
80.		mensionless group in mass tran	sfer v	which is analogous to Prandtl in

(B) Stanton (D) Schmidt.

(A) Sherwood (C) Peclet

01	Knudsen diffusion occurs when the ratio of pore diameter to mean free path of molecules is
	(A) greater than 2.0 (C) less than 0.20 (B) less than 2.0 (D) greater than 0.20
82.	The binary diffusivity of a gaseous component
	 (A) is independent of pressure, but varies with temperature (B) inversely varies with pressure. (C) inversely varies with temperature (D) directly varies with pressure
83.	Schmidt number for gases range from about
	(A) 0.05 to 0.50 (C) 2 to 10 (B) 0.50 to 2 (D) 10 to 100
84.	In agitation and mixing of liquids under laminar flow conditions, the power delivered to the liquid depends on liquid
	(A) density (B) surface tension (C) viscosity (D) All of the above
85.	In a liquid-liquid extraction operation reflux is to be provided at
	(A) middle (B) extract end (C) raffinate end (D) any where
86.	When the feed to a distillation column is at its bubble point, the q-factor is
	(A) 0 (C) > 1 (B) 1 (D) < 1
87.	Spray dryer is used to make
	(A) salts (C) milk powder (B) sugar (D) perfumes.

88.	In a two-stage cross-current adsorption operation, for total minimum solids dosage to be used, equal dosage of solids in both stages can be used when the equilibrium relation is				
	(A) linear(C) exponential	(B) semi-logorithamic(D) logarithamic.			
89.	Falling – film evaporators are prin solutions.	narily used to concentrate			
	(A) salt (C) alkali	(B) sugar(D) highly heat-sensitive.			
90.	When a slow reaction occurs betwee contactor is a	en gas and liquid phases, a preferred			
	(A) spray tower(C) bubble column	(B) packed tower (D) tray tower			
91.	When a small quantity of water evaporair, the steady-state temperature a temperature.	rates into a large quantity of unsaturated ttained is referred to as			
	(A) wet bulb(C) bubble point	(B) dry bulb(D) dew point.			
92.	When a tray tower is operated at h following may occur.	igh vapor and liquid rates, one of the			
	(A) entrainment flooding(C) downcomer flooding	(B) weeping(D) dumping.			
93.	An increase in absolute humidity leads	s to decrease in RH only when			
	(A) temperature decreases(C) pressure increases	(B) temperature increases(D) pressure decreases			
94.	The problem of 'hot spots' may occu	r in reactors			
	(A) fluidized bed(C) packed bed	(B) trickle bed (D) moving bed			

95.	For a effecti	porous catalyst particle, whe veness factor becomes	n Thi	ele modulus is very small, the
	(A) (C)	infinity zero	(B) (D)	•
96.	When must b	complete back-mixing prevails	in a	flow vessel, the Pecklet number
	(A) (C)	unity infinity	(B) (D)	zero less than unity, but not zero
97.	When the chemic	the data of specific reaction rate al reaction, it would be possible	s at va	rious temperatures is given for a lits
		feasibility order	(B) (D)	enthalpy activation energy
98.	Liquid-	liquid heterogeneous reactions r	nay be	carried out in
			rs	
99.	A back is carrie	-mix reactor always remains the ed out.	rmally	stable when reaction
	(A) (C)	multiple endothermic irreversible	(B) (D)	exothermic reversible auto-catalytic
100.	tempera			A+B = C+D is 0.25 at a given ntains one mole each of A and B
	(A)	1	(B) (D)	$\frac{1}{3}$
	(C)	2	(D)	$\frac{2}{3}$

101.	Total pressure method is useful in the evaluation of kinetics ofreactions.				
		liquid-phase biochemical		photochemical None of the above	
102.	A reaction		curve	follows a parabola is	
		photochemical series		biochemical None of the above	
103.	For ser reactor		produ	act is desirable, the most suitable	
		batch reactor PFR		BMR PFR with recycle	
104.	In a po little di	rous catalyst particle, the reactarstance away from pore mouth, w	nt con hen th	centration rapidly falls to zero a e Thiele modulus is	
	(A) (C)	0.10 0.50	(B) (D)	5 10	
105.	The hal	f-life of a first-order reaction is			
	(B)	independent of initial concentration varies exponentially with C_{Ao} varies linearly with C_{Ao} the statements given in a, b and			
106.	The I-c prevails	urve and E-curve are identical:	for a	flow vessel in which	
•		plug flow complete back mixing	(B) (D)	laminar flow macro-mixing	
107.		he order of a reaction is greater as the initial concentration of		nity, the half-life of the reaction actant increases.	
	, ,	increases remains same	(B) (D)	increases and decreases decreases	

108.	3. A PFR has a volume of one cubic meter and is fed with a reaction mixture at rate of 600 liters per minute. The space velocity is					
	(A) (C)	0.60 min. 0.01 sec ⁻¹	(B) (D)			
109.	A sing	le fixed temperature scale is ba	sed on			
		ice point triple point of water	(B) (D)	critical point steam point		
110.	An adi	abatic system can exchange ene	ergy wit	h its surroundings		
	(B) (C)	in the form of heat only in the form of work only both in the form of heat & wo either in the form of heat or w				
111.	The relation between boiling point of a solution and that of pure water at the same pressure is					
		exponential linear	(B) (D)	cubic quadratic		
112.	Super c	ooled liquid water is in a	st	ate of equilibrium		
	(A) (C)	stable neutral	, ,	unstable metastable		
113.	When n	noist air is heated at constant pr	essure,			
	(A) (C)	absolute humidity changes RH decreases		RH increases RH does not change.		
114.	When w	vet steam is throttled to a low pr	ressure,	its temperature		
		increases does not change	(B) (D)	decreases None of the above		
115.	The che	mical potential of a pure substa	nce is e	equal to		
		molar Gibbs' free energy Gibbs' free energy	(B) (D)	specific Gibbs' free energy molar enthalpy		

116.	In an insulated burner, the flame temperature reaches maximum when the fuel is burnt with				
		theoretical air 10% excess air		stoichiometric oxygen 50% excess air	
117.	No gas	can assume a value for C _P /C _V gre	eater t	han	
	(A)	1.0	(B)	1.4	
	(C)	$\frac{3}{5}$	(B) (D)	<u>5</u>	
118.	For an	ideal gas the change in Gibbs' fre	e ene	rgy at constant temperature is	
		RT (dP/P) RT (ln T)	(B) (D)	RT d(ln P) RT (ln V)	
119.	would	ference between the actual properties have as an ideal solution at sition is called propert	the s	lue of a solution and the value it ame pressure, temperature and	
	• •	residual excess	(B) (D)	partial molal specific solution	
120.	Gibbs -	- Duhem equation tells how the p	artial	molar properties change with.	
		all P, T and C		C at constant P & T	
	(C) where I	T at constant P & C P, T, C are pressure, temperature,		P at constant T & C cosition respectively.	
121.	The me	ean kinetic energy of a molecule o	lepend	ds on	
	(A)	temperature and mass		pressure and mass	
	(C)	mass only	(D)	-	
122.	The devalue for	finition of acentric factor introdu or argon, krypton and xenon	ced by	y Pitzer and coworkers makes its	
	(A)			unity	
	(C)	< 1	(D)	<i>></i> 1	

145.	A Call	for refrigerator is considered bed	ause					
	(B) (C)	any refrigerant can be used it is easy to construct and oper it would be compact and light it is taken as a standard of pe of all others are compared	weigh	t on against which the performance				
124.	Reactions which are temperature-sensitive are the							
	(B) (C)	reactions with low activation e reactions with high activation irreversible reactions reversible reactions						
125.	The ter	nperature dependency of latent l	neat of	f vaporization of a liquid is given				
		Kirchoff		Claussius-Clapeyron				
	(C)	Classius	(D)	Gibbs-Duhem.				
126.	Upgrad	ing of low-octane gasolines can	be act	nieved by				
	(A) (C)	catalytic reforming alkylation		catalytic cracking mixing additives				
127.	Teeter l	oeds are essentially						
	(B) (C)	packed bed reactors fluidized bed dryers fluidized beds for adsorption packed beds for adsorption.						
128.	The the	ermal boundary layer and mores when Prandtl number is	nentui	m boundary layer are of same				
		very small equal to 0.50	(B) (D)	very large unity				

129.	The Inc	The Indian Standard Code 18-4503 is used for the design of					
	(B) (C)	unfired pressure vessels distillation columns shell and tube heat exchangers storage tanks.					
130.	Which	one of the following heads is the	e of the following heads is the weakest for a given pressure vessel?				
		Flat Ellipsoidal	(B) (D)	Hemispherical Torispherical			
131.		cal condenser is designed for co d horizontally, will its capacity b		ing hydrocarbon vapors. If it is cted?			
		Yes, it decreases Yes, it increases		No, it does not it depends on the vapor			
132.	Preheat	ing of a gaseous fuel increases					
		ignition temperature rate of combustion	(B) (D)	flame temperature flame length			
133.	In typic	al cracking operations in petrole	um rei	fining the role of steam is to			
	(B)	enhance cracking maintain desired temperature reduce hydrocarbon partial pres maintain catalyst activity	sure				
134.	Stalagn	nometer is used for the measurem	ent of	f ·			
	(A) (C)	viscosity refractive index	(B) (D)	density surface tension			
135.	The an	aplitude ratio for the sinusoida	l resp	onse of a transportation lag is			
	(A) (C)	less than unity unity	(B) (D)	zero greater than unity			

136.	Hot wire anemometer is an instrument used for				
	(A) (C)	electrical conductane fluid pressure	(B)	thermal conductivity None of the above	
137.	A soler	noid valve operates like a	c	controller	
	(A) (C)		(B) (D)	derivative proportional	
138.	An exc tempera would b	trute is to be controlled. The	ut in manip	a flow reactor and the reaction pulated variable in such a system	
		feed flow rate coolant flow rate	(B) (D)	feed temperature None of the above	
139.	Skirt suj	oports are used to erect		:	
	(A) (C)	heat exchangers evaporators	(B) (D)		
140.	When a reaction	first-order chemical reaction is is to make the time constant of	carrie	d in an ideal MFR, the effect of stem hold-up time	
		equal to less than	(B) (D)	greater than None of the above	
141.	The band	width of an on-off controller is	S		
	(A) z (C) 7	zero 75%	(B) (D)	50% 100%	
142.	For an un	der-damped system, the dampin	ng coe	fficient is	
		enity ess than unity	` /	zero greater than unity	

143.		AFR operating und	ler steady-state	co	onditions	can 1	be	modeled	as
	(B) (C)	lumped distributed neither lumped no both lumped and							
144.		is a measure of	catalytic activity						
		particle size surface area	`	,	pore size pore volu				
145.		losses through va	alves and fittin	ıgs	are cor	nmonl	У	modeled	as
	, ,	static head total head	,		pressure ovelocity h	-			
146.	Fault to	ree analysis is a	risk asses	sme	ent method	i			
		semi-qualitative quantitative	•	•	qualitativ semi-quai		е		
47.	Shootir	ng method is used to	solve						
	(B) (C)	initial value proble boundary value pro numerical integrati None of the above	blems						
48.	For sol	ving partial differen	ntial equations i	um	erically .	••••••		. method	is
	(A) (C)	Galerkin Milne	(B)		Range-Ku Crank-Nic		ì		

- 149. When detonation takes place, the flame front travels at
 - (A) less than sonic velocity
- (B) greater than sonic velocity

(C) sonic velocity

- (D) light velocity
- 150. Of the pressure vessels having different shell diameters, but same shell thickness, which one of the following withstands higher pressure?
 - (A) short vessel having large diameter
 - (B) larger diameter vessel
 - (C) tall vessel having large diameter
 - (D) smaller diameter vessel
